St George Girls High School

Trial Higher School Certificate Examination

2011

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Begin each question on a new booklet
- Write your student number on each page
- All necessary working must be shown.
- Diagrams are not to scale.
- Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.

Total Marks - 120

- Attempt ALL questions.
- All questions are of equal value.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Question 1 - (12 marks) Marks

Simplify $\sqrt{75} - 2\sqrt{12}$ a)

2

b) Solve
$$5x^2 = 2x + 3$$

2

c) Factorise
$$y^3 - 8$$

1

d) If
$$0^{\circ} \le \theta \le 360^{\circ}$$
 and $\cos \theta = -\frac{\sqrt{3}}{2}$ find all possible values of θ

2

e) If
$$y = xe^x$$
 find $\frac{dy}{dx}$

2

1

g) Show on a neat diagram (at least
$$\frac{1}{3}$$
 of a page) the region defined by the intersection of: $x - v \le -1$ and $5x + 3v \le 19$

$$x - y \le -1$$
 and $5x + 3y \le 19$

Question 2 - (12 marks)

Marks

- a) (i) Find the equations of the tangents to $y = 4x x^2$ at the points where the curve crosses the x axis.

4

- (ii) Calculate the area bounded by the tangents and the x axis.
- 2

2

b) Find the sum of the series

$$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \cdots$$

- c) If f(x) = x(x-1)(x+2) find the area bounded by f(x) and the x axis between x = -1 and x = 1.
- d) Write as a logarithm $2^x = 7$

1

Question 3 - (12 marks)

Marks

a)

ABCD is a quadrilateral as shown in the diagram. The equation of *AB* is 2x + 3y - 12 = 0. The coordinates of *C* and *D* are (-2,0) and (1,-2) respectively.

(NOT TO SCALE)

(i) What is the size (to the nearest minute) of the acute angle between AB and the x axis.

2

(ii) Show $AB \parallel CD$

1

(iii) Show the equation of *CD* is 2x + 3y + 4 = 0

2

(iv) If M is the midpoint of AB, find the distance from M to CD

2

(v) Hence, or otherwise, write down the equation of the circle centre M_3 having CD as a tangent.

1

b) Find:

(i)
$$\int \frac{3x}{x^2 - 1} \ dx$$

2

(ii)
$$\int_{\pi}^{2\pi} \cos \frac{x}{3} \ dx$$

Question 4 - (12 marks)

Marks

a) Express
$$\frac{\sqrt{3}-1}{2\sqrt{3}-1}$$
 with a rational denominator.

2

2

b) If
$$\frac{ds^2}{dt^2} = 3t - 4$$
 find s, given that when $t = 0$, $s = 6$ and $\frac{ds}{dt} = 0$

c) In
$$\triangle ABC \sin B = \frac{2}{3}$$
, $a = 4$ and $b = 7$. Find $\sin A$ as a simple fraction.

Draw a neat sketch of $y = 3 \sin 2x$ for $0^{\circ} \le x \le 360^{\circ}$

d) Find
$$\int \frac{x^2 + x - 1}{x^2} dx$$

f) Solve
$$3 \times 9^x - 28 \times 3^x + 9 = 0$$

Question 5 - (12 marks)

Marks

a) Differentiate with respect to $x: y = \frac{\tan x}{x}$

2

- b) For the curve $y = x^3 3x^2$
 - (i) Find the coordinates of any stationary points and determine their nature. 4
 - (ii) Find the coordinates of any points of inflexion.

1

3

2

- (iii) Sketch the graph of this function, indicating clearly all relevant features.

c) Find $\int \sqrt[3]{x} + \sin 3x \ dx$

Question 6 - (12 marks)

Marks

3

a) Prove that

$$\frac{\sin^2 x}{1 - \cos x} + \frac{\sin^2 x}{1 + \cos x} = 2$$

b)

In the diagram $\angle ADE = \angle ACB$. Prove that $\triangle AED ||| \triangle ABC$ Hence find the value of y.

3

- c) The equation of a parabola is given by $x^2 4x 2y + 8 = 0$. Find the:
 - (i) coordinates of the vertex.

2

(ii) coordinates of the focus.

2

(iii) gradient of the normal to this parabola at the point (0, 4)

Question 7 - (12 marks)

Marks

a)

In the diagram AB and AC are radii of length r of a circle centre A. The arc BC subtends an angle of θ radians at A.

- (i) Write down a formula for:
 - (α) the length of arc *BC*.

1

1

- (β) the area of sector *ABC*.
- (ii) The perimeter of ABC is 12m. Show that the area, y square metres, is given by
 - $y = \frac{72\theta}{(\theta+2)^2}$
- (iii) Show the maximum area is 9m².

3

2

b)

The diagram shows the graphs of $y = \sec^2 x$ and y = x between x = 0 and $x = \frac{\pi}{4}$

Calculate the area of shaded region, correct to 2 decimal places.

3

2

c) Find the values of m for which the equation $4x^2 - mx + 9 = 0$ has real roots.

Question 8 - (12 marks)

Marks

a) The second term of a geometric series is $\frac{3}{8}$ and the seventh term is 12. Find the 14th term.

2

b) Let α and β be the roots of $3x^2 + 4x - 3 = 0$ evaluate

(i)
$$\alpha + \beta$$

1

(ii)
$$\alpha\beta$$

(i)

1

(iii)
$$2\alpha^2 + 2\beta^2$$

2

The part of the curve $\frac{x^2}{2} + y^2 = 8$ that lies in the first quadrant is rotated about the x axis. Find the volume of revolution.

3

d) Grace invests \$10 000 at 6% p.a., interest calculated and added monthly, in a savings account.

What is the value of her investment after 2 years?

- 1
- (ii) What rate of simple interest would produce the same value over the 2 years (answer to 2 decimal places).

Question 9 - (12 marks)

Marks

a) (i) Show that $\frac{d}{dx}(x \ln x - x) = \ln x$

1

(ii) Using the relationship $\ln x^2 = 2 \ln x$, or otherwise, find

1

3

$$\int \ln x^2 \, dx$$

(iii)

The graph shows the curve $y = \ln x^2$ which meets the line x = 5 at Q. Using your answers from (i) and (ii), or otherwise, find the area of the shaded region.

b) (i) Write down the domain of

1

$$y = \frac{1}{x} + \log x$$

(ii) Show that the first and second derivatives may be expressed as

2

$$\frac{dy}{dx} = \frac{x-1}{x^2}$$
 and $\frac{d^2y}{dx^2} = \frac{2-x}{x^3}$

(iii) Show that the curve has a minimum at (1, 1)

2

c) Find k if

$$\int_1^k \frac{4}{x^2} \ dx = 3$$

Question 10 - (12 marks)

Marks

a) Find the size of x, no reason required.

- (i) Copy the diagram into your answer booklet and show why $\angle PAT = 75^{\circ}$ 1
- (ii) Prove $\Delta TAP \equiv \Delta DAP$

Question 10 - (cont'd)

Marks

- A car company offers a loan of \$20 000 to purchase a new car for which it charges interest at 1% per month. As a special deal the company does not charge interest for the first 6 months, however, the monthly payments start at the end of the first month. Beth takes out a loan and agrees to repay the loan over 5 years by making 60 equal monthly repayments of \$m. Let A_n be the amount owing at the end of the n^{th} month (after a repayment and interest, if any).
 - (i) Find an expression for A_4

1

(ii) Show $A_8 = (20\ 000 - 6m)(1.01)^2 - m(1 + 1.01)$

1

(iii) Find an expression for A_{60}

1

(iv) Find the value of m

÷		St George GHS Trial HSC Ma	thematics 2011
		Question 1	Question 2
	- 1	513-2x213	(a)(i) $y = 4x - x^2$
		= 13	Cuts on axis when y=0
			$4x-x^2=0$
(A	4	$5x^{2}-2x-3=0$	2(4-2) =0
		(5x+3)(x-1)=0	2 = 0,4
		$\chi = -3$	dy = 4-2x
		3 ,	
(0	ار۔	$(y-2)(y^2+2y+4)$	When $x=0$ $\frac{dy}{dn}=4$
			$x = 4 \frac{dy}{dx} = 4 - 2 \times 4 = -4$
6	(d)	Pacute = 30°	Egn of tangent at (0,0)
		θ = 180°-30°, 180°+30°	y = 4x
		= 150° 210°	Egn of tangent at (0,4)
			y-0=-4(x-4)
<u>(e</u>	2)	y = xex	y = -4x+16
		dy = 1.ex + x.ex	
		dr = ex(1+2c)	(ii) $y = 4x$ mee
	\perp		y = -42 + 16
(f	f)	225° = 5 TT rad.	4x = -4x + 16
		4	8x=16
<u> </u>	1)	χ 0 -1 χ 0 3 4/5	4 $x=2$
7		y 1 0 y 63 0	y = 8
	_	x-y=-1 14 52+3y=19	A = ± × 4×8
		63	Area = 16 units
	_		(4) $1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}+\cdots$
			Infinite geometric series
			$a=1 r=-\frac{1}{4}$
	-		S = Q $I-C$
	-	345	7 1-0
1	-	//////////////////////////////////////	= 14
	4		= 4
			5

1		
. ((c) $y = x(x-1)(x+2)$	(ii) Grad CD = -2-0
		12
		= -2 3
	-2/1/1	= Grad AB
		- ABIICD
	$\chi(\chi-1)(\chi+2) = \chi(\chi^2+\chi-2)$	(i) Egn of CD: m=-= C(20)
	$= \chi^3 + \chi^2 - 2\chi$	$y - 0 = -\frac{2}{3}(x - 2)$ $3y = -2x - 4$
	0	3y = -2x - 4
	$A = \int_{-1}^{0} x^{3} + x^{2} - 2x dx + \int_{0}^{1} x^{3} + x^{2} - 2x dx$	22+34+4=0
	$= \left(\frac{2}{4} + \frac{x^{3}}{3} - 2\right) + \left(\frac{x^{4}}{4} + \frac{x^{3}}{3} - 2^{2}\right)$	(iv) $2x + 3y - 12 = 0$
	7	When y=0 x=6 A(6,0)
	$= 0 - (\frac{1}{4} - \frac{1}{3} - 1) + (\frac{1}{4} + \frac{1}{3} - 1) - 0$	x = 0 $y = 4$ $B(0,4)$
	= 112 + -5	
	$= 1\frac{1}{2}$	M is $(\frac{6+0}{2}, \frac{0+4}{2}) = (3, 2)$
•	Area = 1.5 units	
		d = [2x3+3x2+4]
	$(d) 2^{x} = 7$	$\sqrt{2^2+3^2}$
	$z = \log_2 7$	= 16 \[\sqrt{13}
		$\sqrt{13}$
	Question 3	
	(a) (1) AB: 2x+3y-12=0	(v) Eq of circle is
	3y = -2x + 12	$(x-3)^2 + (y-2)^2 = 256$
	$y = -\frac{2}{3}x + 4$	13
	Grad of $AB = -\frac{2}{3}$ 6	(a) $\int \frac{3x}{x^2-2} dx = \frac{3}{2} \int \frac{2x}{x^2-1} dx$
	Let 0 be acute angle between	
	AB and the x axis	$=\frac{3}{2}\log_{e}(x^{2}-1)+C$
	$\tan \theta = -\frac{2}{3} = \frac{2}{3}$	217
١.	O = 33°41'	(c) $\int_{\pi}^{2\pi} \cos\left(\frac{x}{3}\right) dx = \left[3\sin\frac{x}{3}\right]^{2\pi}$
		= 3 sin 3 - 3 sin 3
		$=3\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)$
		= 0
+-		

Question 4

(a)
$$\sqrt{3}-1 \times 2\sqrt{3}+1$$

 $2\sqrt{3}+1$

$$= \frac{2 \times 3 - 2 \sqrt{3} + \sqrt{3} - 1}{4 \times 3 - 1}$$

$$= \int 1 + \frac{1}{x} - x^{-2} dx$$

$$= x + \ln x - x^{-1} + C$$

90 135 186 225 270 315 360 3

(b)
$$\frac{ds}{dt^2} = 3t - 4$$

 $\frac{ds}{dt^2} = 3t^2 - 4t + c$

When
$$t=0$$
 $\frac{ds}{dt}=0$

$$\frac{ds}{dt} = \frac{3t^2 - 4t}{2}$$

$$S = \frac{t^3}{2} - 2t^2 + C_2$$

$$s = t^3 - 2t^2 + 6$$

(f)
$$3 \times 9^{2} - 28 \times 3^{2} + 9 = 0$$

$$3x(3^{x})^{2}-28x3^{x}+9=0$$

Let
$$m = 3^{\times}$$

$$3m^2-28m+9=0$$

$$(3m-1)(m-9)=0$$

$$m = \frac{1}{3}, 9$$

 $3^{\times} = 3^{-1} 3^{\perp}$

$$\frac{A}{\sin A} = \frac{\sin B}{b}$$

$$\frac{\sin A}{4} = \frac{2}{\frac{3}{3}}$$

$$SINA = 4 \times 2 \times 1$$

$$=\frac{8}{21}$$

0			
*		Question 6	
J.	(a)	LHS = Sin x + Sin x	(c) x²-4x-2y+8=0
, ,	7	1-605x 1+605x	$x^2 - 4x = 2y - 8$
		$= \sin^2 \left(\frac{1}{1} + \frac{1}{1} \right)$	$x^2 - 4x + 4 = 2y - 8 + 4$
		(1-LOSX 1+LOSX)	$(x-2)^2 = 2y-4$
		$= \sin x \left(1 + \cos x + 1 - \cos x\right)$	=2(y-2)
		1-605°X	=4x \(\frac{1}{2}\)
		$= \sin^2 x \times 2$ $= \sin^2 x$	· · · · · · · · · · · · · · · · · · ·
		Sint	(i) Vertex is (2,2)
		= 2	
		= RHS	(ii) Focal length = \frac{1}{2}
		A	Focus is $(2,2\frac{1}{2})$ or
Place Per-Security Association Association Conference on Company of Conference on Conf	(U)	- 24/ R	(2, \frac{\xi}{2})
and a second		J/5 / y	$(iii) 2y = x^2 - 4x + 8$
		•	$y = \frac{1}{2}x^2 - 2x + 4$ $dy = x - 2$ dn
		ВС	$\frac{dy}{dx} = x - 2$
	_	In As AED, ABC	
		L DAE is common	When $x = 0$ dy = -2
		LADE = LACB (given)	
()		- AADE III A ACB (equiangular)	Grad of normal at
7 >	<u> </u>	AD = AE = DE (corresponding AC AB CB (sides in similar triangles)	$(0,4)$ is $\frac{1}{2}$
	<u> </u>		
		24 = 12 $12+y = 40$	
	<u> </u>	1279 40	
		12+9 40	
	<u> </u>		
		12+y = 80	
	<u> </u>	y = 68	
-	-		
	\vdash		
	\vdash		
	t	·	

		^ •
	Question 7	- T
	(a) (i) (d) $l = r\theta$ (b)	$A = \int_{0}^{4} (\sec^{2}x - x) dx$
-4	$(\beta) A = \frac{1}{2} \Gamma^2 \theta$	$= \int \tan x - \frac{x^2}{2} \int_{-\infty}^{\sqrt{4}}$
	(p) 11-21 b	L -0
	(ii) Perimeter = 2r+r0	$= \left(\tan \frac{\pi}{4} - \frac{1}{2} \cdot \frac{\pi^2}{16}\right) - (0-0)$
	$2r+r\theta=12$	$= 1 - \underbrace{11^2}_{32}$
	$r(\theta+2)=12$	<u></u>
	C = 12	Area = 0.69157
	0+2	= 0.69 unit (2dp)
	$A = \frac{1}{2} \times \left(\frac{12}{\theta + 2}\right)^2 \times \theta$	
	2 (O+3)	$4x^2 - mx + 9 = 0$
	= 720	has reatoots when $\Delta > 0$
	(O+2)*	$\Delta = (-m)^2 - 4 \times 4 \times 9$
		$= m^2 - 144$
	$\frac{(ii)}{d\theta} = \frac{72(\theta+2)^2 - 72\theta.2(\theta+2)}{(\theta+2)^4}$	- Real roots when
		(m-12)(m+12) > 0
	=72(0+2)(0+2-20)	m ≤-12 or m > 12
-	$(\theta + 2)^4$	
	$= 72(2-\theta)$	
	$(\theta+2)^3$	
	Stationary points occur when dA =0	
	$72(2-\theta) = 0$	
	(O+2)3	
	$\theta = 2$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	TG 27 125	
	/ \- M / \- 0 - 2	
	: Max tp when $\theta = 2$	
<u> </u>	When $\theta = 2$ $A = 72 \times 2 = 9$ $(2+2)^{2}$	
	- Maxarea = 9m²	

e e		
į.	Question 8	
1	(a) Let a be 1st term and	(c) $\frac{x^2}{3} + y^2 = 8 x \ge 0$
	r the common ratio	~
	$t_2 = ar = \frac{3}{8}$ 0	When $y=0$ $\frac{\chi^2}{2}=8$
	$t_7 = ar^6 = 12$ ②	$\frac{2}{x} = 4 (x > 0)$
	$2 \div 0 \frac{ar^6 = 12 \div \frac{3}{8}}{ar}$	
		$V = \widehat{II} \int_{0}^{4} y^{2} dx$
	r ^s = 32	•
AND THE RESIDENCE OF THE PARTY	r = 2	$= \pi \int_0^4 8 - \frac{\chi^2}{2} d\chi$
	$2 \times 2 = \frac{3}{8}$	$C = \chi^3 - 74$
	$a \times 2 = \frac{3}{8}$ $a = \frac{3}{16}$ $- t_{14} = ar^{13}$	$= \widehat{11} \left[8\chi - \frac{\chi^3}{6} \right]_0^4$
<u> </u>	- t = ar 13	~ 1
	= 76 × 2	$= \pi \left[\left(32 - \frac{64}{6} - (0 - 0) \right) \right]$
	= 3x2 ⁹	Volume = 64TT units 3
	= 1536	3
		(d) Interest rate = $6/0$ pa = $0.5/0$ per mon (i) $V = 10000 \times 1.005^{24}$
	(a) $3x^2 + 4x - 3 = 0$	$(1) V = 10000 \times 1.005^{24}$
	(i) d+B = -4	= 11271.59776
	3	Value is \$11271.60 (nearest cent)
	(ii) $\angle \beta = -\frac{3}{3}$	
	=-1	(ii) Interest for 2yrs =\$1271.60
<u> </u>		Interest for lyr = \$635.80
M2.,	(iii) $2(\lambda^2+\beta^2)=2(\lambda+\beta)^2-2\lambda\beta$	Simple Interestrate = 635.8 x 100 9
	$=2\left(-\frac{4}{3}\right)^{2}-2\times-17$	10000
	= 2[16+2]	= 6.358 % p.a
		= 6.36% pa
	$=7\frac{5}{9}\left(=\frac{68}{9}\right)$	707

```
Question 10
(a) (i) x = 40
                                     (ii) A<sub>6</sub> = 20000 - 6m
  (Use exterior Lof triangles
                                        A_7 = A_6 + Interest - m
                                              = A6 x1.01 - m
   angle sum of \Delta)
                                              = (20000-6m)x1.01-m
  (i) x = 22.5
                                      A_g = A_q \times 1.01 - m
                                           =(20000-6m)x1.01-mx1.01-m
    (use equal Ls in isosceles
                                          =(20000-6m)\times1.01-m(1+1.01)
    A and exterior L of D)
                                    By the same pattern
A_n = (20000 - 6m) \times 1.01^{-6} - m(1+1.01+...+1.01^{-6})
                                 - A60 = (20000-6m) x1.01 54-m(1+1.01+..+1.015
                                      = (20000-6m) x 1.01 54 m. (1.0154-1)
  (i) LTAB= 60° (equilateral A)
   LPAT = 60+15 = 75
                                     = (20000-6m)_{x}1.01^{54} - m(1.01^{54}-1)
 (ii) LBAD = 90° (angle in a square)
                               Since loan is repaid after Syrs
A60 = 0
         = 750
   In ASTAP, DAP
   AT = AB (equal sides in
                                  0 = 20000 × 1.0154 - 6m × 1.0154 _ 100m (1.0154)
   AD = AB ( equal sides )
                             6mx10154+100m(1.0154-1) = 20000×1.0154
   :. AT = AD (= AB)
                             m \left[ 6 \times 1.01^{54} + 100 \times 1.01^{54} - 100 \right] = 20000 \times 1.01^{54}
  LTAP = LDAP (= 75°)
                                m = 20000 \times 1.01^{54}
   AP is common
                                     106×1.0154-100
   ATAP = ADAP (SAS)
                                   = 420.4448....
(c) (i) A = 20000-m
                                  m = 420.44 (2dp)
        A_{r} = 20000 - m - m
          =20000-2m
        A4 = 20000-4m
```